
Turing Machines
Part One

What problems can we solve with a computer?

Regular
Languages

CFLs

All Languages

Languages
recognizable by

any feasible
computing
machine

All Languages

That same drawing, to scale.

The Problem

Finite automata accept precisely the
regular languages.

We may need unbounded memory to
recognize context-free languages.

e.g. { anbn | n ∈ ℕ } requires unbounded
counting.

How do we build an automaton with finitely
many states but unbounded memory?

A Brief History Lesson

Technology has solved all of mankind’s
problems! No more wars or sad ever!

<ahem>

Hilbert’s Vision

• 1900: International Congress of Mathematicians
meeting in Paris

• Proposes 23 unsolved problems as the agenda for the
coming years

• An important theme is not simply proving more
theorems, but achieving automation of theorem-
proving, even theorem generation.

• Humanity lives in leisure while all Truth flows
effortlessly into our hands on a ticker tape!

• “No one shall expel us from the Paradise that Cantor
has created!” -David Hilbert

Hi there, Reality!

Hilbert’s agenda is both a spectacular success and a
spectacular failure

Inspires some of the most impactful theoretical work
in mathematical history, human history

Brings us heroes like Alan Turing and Kurt Gödel!

These incredible results consist of utterly
demolishing all the pillars of Hilbert’s vision of
automated knowledge creation, within just a few
years

“No one shall expel us from the Paradise that Cantor has
created!” -David Hilbert

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

This is the Turing machine’s
finite state control. It issues

commands that drive the
operation of the machine.

start

□ → □, R a → □, R

a → □, R □ → □, R

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

This is the TM’s infinite tape.
Each tape cell holds a tape

symbol. Initially, all (infinitely
many) tape symbols are blank.

… …

start

□ → □, R a → □, R

a → □, R □ → □, R

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

The machine is started with the
input string written somewhere

on the tape. The tape head
initially points to the first symbol of

the input string.

a a a a… …

start

□ → □, R a → □, R

a → □, R □ → □, R

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

a a a a… …

q
0

Like DFAs and
NFAs, TMs begin
execution in their

start state.

start

□ → □, R a → □, R

a → □, R □ → □, R

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

a

q
0

At each step, the
TM only looks at

the symbol
immediately under

the tape head.

start

□ → □, R a → □, R

a → □, R □ → □, R

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

a

q
0

These two transitions
originate at the current

state. We’re going to
choose one of them to

follow.

start

□ → □, R a → □, R

a → □, R □ → □, R

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

a

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R Each transition has the form

read → write, dir

and means “if symbol read is under the tape head, replace it with write and

move the tape head in direction dir (L or R). The ☐ symbol denotes a blank cell.

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

a

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R Each transition has the form

read → write, dir

and means “if symbol read is under the tape head, replace it with write and

move the tape head in direction dir (L or R). The ☐ symbol denotes a blank cell.

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R Each transition has the form

read → write, dir

and means “if symbol read is under the tape head, replace it with write and

move the tape head in direction dir (L or R). The ☐ symbol denotes a blank cell.

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R Each transition has the form

read → write, dir

and means “if symbol read is under the tape head, replace it with write and

move the tape head in direction dir (L or R). The ☐ symbol denotes a blank cell.

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R Each transition has the form

read → write, dir

and means “if symbol read is under the tape head, replace it with write and

move the tape head in direction dir (L or R). The ☐ symbol denotes a blank cell.

a a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …a

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …a

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …a

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R

a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
0

Unlike a DFA or NFA, a TM
doesn’t stop after reading all
the input characters. We keep

running until the machine
explicitly says to stop.

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

q
acc

q
rej

This special state is an
accepting state. When a TM
enters an accepting state, it
immediately stops running
and accepts whatever the

original input string was (in
this case, aaaa).

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

This special state is an
accepting state. When a TM
enters an accepting state, it
immediately stops running
and accepts whatever the

original input string was (in
this case, aaaa).

q
acc

start

□ → □, R a → □, R

a → □, R □ → □, R

a a a… …a a

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

q
acc

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R

a a a… …a

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

q
acc

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a a a… …

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

q
acc

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R

a a… …

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

q
acc

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

a… …

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

q
acc

q
0

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

q
acc

q
1

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
rej

q
1

q
rej

q
acc

This special state is a
rejecting state. When a TM

enters a rejecting state, it
immediately stops running
and rejects whatever the

original input string was (in
this case, aaaaa).

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
1

q
acc

This special state is a
rejecting state. When a TM

enters a rejecting state, it
immediately stops running
and rejects whatever the

original input string was (in
this case, aaaaa).

q
rej

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
1

q
acc

q
rej

q
0

If the TM is started on the
empty string ε, the entire tape
is blank and the tape head is
positioned at some arbitrary

location on the tape.

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
1

q
acc

q
rej

If the TM is started on the
empty string ε, the entire tape
is blank and the tape head is
positioned at some arbitrary

location on the tape.

start

□ → □, R a → □, R

a → □, R □ → □, R

… …

A Simple Turing Machine

q
0

q
1

q
acc

q
rej

If the TM is started on the
empty string ε, the entire tape
is blank and the tape head is
positioned at some arbitrary

location on the tape.

start

□ → □, R a → □, R

a → □, R □ → □, R

The Turing Machine

A Turing machine consists of three parts:

• A finite-state control that issues commands,

• an infinite tape for input and scratch space, and

• a tape head that can read and write a single tape
cell.

At each step, the Turing machine

• writes a symbol to the tape cell under the tape head,

• changes state, and

• moves the tape head to the left or to the right.

Input and Tape Alphabets

A Turing machine has two alphabets:

• An input alphabet Σ. All input strings are written in
the input alphabet.

• A tape alphabet Γ, where Σ ⊊ Γ. The tape alphabet
contains all symbols that can be written onto the tape.

The tape alphabet Γ can contain any number of
symbols, but always contains at least one blank
symbol, denoted ☐. You are guaranteed ☐ ∉ Σ.

At startup, the Turing machine begins with an infinite
tape of ☐ symbols with the input written at some
location. The tape head is positioned at the start of
the input.

Accepting and Rejecting States

Unlike DFAs, Turing machines do not stop
processing the input when they finish
reading it.

Turing machines decide when (and if!) they
will accept or reject their input.

Turing machines can enter infinite loops
and never accept or reject; more on that
later...

Determinism

q
0

q
rej

q
1

q
rej

q
acc

Turing machines are deterministic: for every
combination of a (non-accepting, non-rejecting) state q
and a tape symbol a ∈ Γ, there must be exactly one
transition defined for that combination of q and a.

Any transitions that are missing implicitly go straight to
a rejecting state. We’ll use this later to simplify our
designs.

start

□ → □, R a → □, R

a → □, R □ → □, R

Determinism

q
0

q
1

q
acc

Turing machines are deterministic: for every
combination of a (non-accepting, non-rejecting) state q
and a tape symbol a ∈ Γ, there must be exactly one
transition defined for that combination of q and a.

Any transitions that are missing implicitly go straight to
a rejecting state. We’ll use this later to simplify our
designs.

This machine is
exactly the
same as the

previous one.

start

□ → □, R a → □, R

a → □, R

q
0

q
1

q
acc

q
rej

Run the TM shown above on the input string bba.
What will the tape look like when the TM finishes running?

… b b a …A.

…… a a bD.

… a a b …B.

… b b a …C.

E. None of these, or two or more of these.

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b a… …b

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b a… …a

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

a a… …a

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

a b… …a

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

a b… …a

q
1

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

a b… …a

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

a b… …a

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

If M is a Turing machine with input alphabet Σ, then
the language of M, denoted ℒ(M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

a b… …a

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

a b… …b

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b b… …b

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b a… …b

q
0

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b a… …b

q
1

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b a… …b

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b a… …b

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

q
0

q
1

q
acc

q
rej

b a… …b

Although the tape ends with bba written on it, the

original input string was aab. This shows that the TM

accepts aab, not bba.

So ℒ(M) = { w ∈ {a, b}* | w ends in b }

start □ → □, L

a → a, L

a → b, R

□ → □, L
b → b, L

b → a, R

Designing Turing Machines

Despite their simplicity, Turing machines
are very powerful computing devices.

Today's lecture explores how to design
Turing machines for various languages.

Designing Turing Machines

Let Σ = {0, 1} and consider the language L
= {0n1n | n ∈ ℕ }.

We know that L is context-free.

How might we build a Turing machine for
it?

L = {0n1n | n ∈ ℕ }

0 0 0 1 1 1… …

… …

0 1 0… …

1 1 0 0… …

A Recursive Approach

The string ε is in L.

The string 0w1 is in L iff w is in L.

Any string starting with 1 is not in L.

Any string ending with 0 is not in L.

A Sketch of the TM

0 0 0 1 1 1… …

A Sketch of the TM

0 0 1 1 1… …

A Sketch of the TM

0 0 1 1 1… …

A Sketch of the TM

0 0 1 1 1… …

A Sketch of the TM

0 0 1 1 1… …

A Sketch of the TM

0 0 1 1 1… …

A Sketch of the TM

0 0 1 1 1… …

A Sketch of the TM

0 0 1 1 1… …

A Sketch of the TM

0 0 1 1… …

A Sketch of the TM

0 0 1 1… …

A Sketch of the TM

0 0 1 1… …

A Sketch of the TM

0 0 1 1… …

A Sketch of the TM

0 0 1 1… …

A Sketch of the TM

0 0 1 1… …

A Sketch of the TM

0 1 1… …

A Sketch of the TM

0 1 1… …

A Sketch of the TM

0 1 1… …

A Sketch of the TM

0 1 1… …

A Sketch of the TM

0 1 1… …

A Sketch of the TM

0 1… …

A Sketch of the TM

0 1… …

A Sketch of the TM

0 1… …

A Sketch of the TM

0 1… …

A Sketch of the TM

1… …

A Sketch of the TM

1… …

A Sketch of the TM

1… …

A Sketch of the TM

… …

A Sketch of the TM

… …

start

start

0 0 0 1 1 1… …

start

0 0 0 1 1 1… …

Check
for 0

Check
for 0

start

0 0 0 1 1 1… …

Check
for 0

Check
for 0

start

0 0 0 1 1 1… …

0 → □, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

0 → □, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R
1 → 1, R

0 → 0, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R
1 → 1, R

0 → 0, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R
1 → 1, R

0 → 0, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R
1 → 1, R

0 → 0, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R
1 → 1, R

0 → 0, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R
1 → 1, R

0 → 0, R

Check
for 0

Check
for 0

start

0 0 1 1 1… …

Go to
end

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

Go to
end

Go to
end

Check
for 0

Check
for 0

start

0 0 1 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1 1… …

Clear a
1

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1 1… …

Clear a
1

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

Go to
start

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

Go to
start

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

Go to
start

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

Go to
start

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

Go to
start

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

Go to
start

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

start

0 0 1 1… …

Go to
start

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

start

0 0 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

start

0 1 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Clear a
1

Clear a
1

Go to
start

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Clear a
1

Clear a
1

Go to
start

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Clear a
1

Clear a
1

Go to
start

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
start

Clear a
1

Clear a
1

Go to
start

Go to
end

Check
for 0

Go to
end

start

0 1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Clear a
1

Go to
start

Go to
end

start

1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Clear a
1

Go to
start

Go to
end

start

1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

start

1… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

start

… …

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

start

… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

0 0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

0 0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

start

0 1 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

start

0 1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

start

1 1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

start

1… …

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

start

1… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

0 0 1… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Go to
end

start

0 0 1… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

0 1… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

start

0 1… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

start

0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

Check
for 0

Go to
end

start

0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

Clear a
1

Go to
end

start

… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

start

… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start

Clear a
1

Go to
start

start

… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Check
for 0

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Go to
start
Go to
start

start

0 1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Clear a
1

Clear a
1

Go to
end

Go to
start
Go to
start

start

1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Clear a
1

Clear a
1

Go to
end

Go to
start
Go to
start

start

1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Check
for 0

Go to
end

Check
for 0

Clear a
1

Clear a
1

Go to
end

Go to
start
Go to
start

start

1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Clear a
1

Go to
start
Go to
start

start

1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Clear a
1

Go to
start
Go to
start

start

1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

1 0… …

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

q
acc

q
acc

q
acc

q
rej

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

1 → □, R

□ → □, R

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

q
acc

q
acc

0 → □, R
1 → 1, R

0 → 0, R

□ → □, L

1 → □, L
1 → 1, L

0 → 0, L

□ → □, R

□ → □, R

Time-Out for Announcements!

Problem Sets

• Problem Set Five is due this Thursday at
11:59pm. It is the last problem set you
can use late periods on.

• Problem Set Six is a significantly shorter
problem set, but is due next Wednesday
(the last day of the class) at 11:59pm
with NO late submissions accepted.

Final Exam

• As a reminder, the final exam for CS103 will be
on Friday August 14th.

• This will be conducted similar to the midterm,
with a 24 hour window to start, and 3 hours to
take. Full details on Campuswire.

• Notably, window opens at 8:30AM as opposed to
9:30AM to match our normal final schedule.

• We will release some practice final exams early
next week.

Your Questions

Your Questions

“If you weren’t committed to ‘doing
computer science’ in some capacity,

whether in academia or otherwise, what
would you be doing?”

Your Questions

“Which subdisciplines of computer science
is the material from this course directly

relevant to?”

Your Questions

“Who should study CS? What type of
person is CS most suited to?”

Your Questions

“Favorite tabletop game?”

Five minute break!

Another TM Design

We've designed a TM for {0n1n | n ∈ ℕ}.

Consider this language over Σ = {0, 1}:

L = { w ∈ Σ* | w has the same number
of 0s and 1s }

This language is also not regular, but it is
context-free.

How might we design a TM for it?

0 0 0 1 1 1 0… …1

A Caveat

0 0 1 1 1 0… …1

A Caveat

0 0 1 1 1 0… …1

A Caveat

0 0 1 1 1 0… …1

A Caveat

0 0 1 1 0… …1

A Caveat

0 0 1 1 0… …1

A Caveat

0 0 1 1 0… …1

A Caveat

0 0 1 1 0… …1

A Caveat

0 1 1 0… …1

A Caveat

0 1 1 0… …1

A Caveat

0 1 1 0… …1

A Caveat

How do we know that
this blank isn't one of

the infinitely many
blanks after our input

string?

0 1 1 0… …1

A Caveat

0 1 0… …1

A Caveat

0 1 0… …1

A Caveat

0 1 0… …1

A Caveat

0 1 0… …1

A Caveat

1 0… …1

A Caveat

1 0… …1

A Caveat

How do we know that
this blank isn't one of

the infinitely many
blanks after our input

string?

1 0… …1

A Caveat

1 0… …1

A Caveat

How do we know that
this blank isn't one of the

infinitely many blanks
after our input string?

One Solution

0 0 0 1 1 1 0… …1

One Solution

× 0 0 1 1 1 0… …1

One Solution

× 0 0 1 1 1 0… …1

One Solution

× 0 0 1 1 1 0… …1

One Solution

× 0 0 × 1 1 0… …1

One Solution

× 0 0 × 1 1 0… …1

One Solution

× 0 0 × 1 1 0… …1

One Solution

× 0 0 × 1 1 0… …1

One Solution

× 0 0 × 1 1 0… …1

One Solution

× 0 0 × 1 1 0… …1

One Solution

× × 0 × 1 1 0… …1

One Solution

× × 0 × 1 1 0… …1

One Solution

× × 0 × 1 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × 0 × × 1 0… …1

One Solution

× × × × × 1 0… …1

One Solution

× × × × × 1 0… …1

One Solution

× × × × × 1 0… …1

One Solution

× × × × × × 0… …1

One Solution

× × × × × × 0… …1

start

00 0 1 1 1 0… …1

start

00 0 1 1 1 0… …1

Find
0/1

start

00 0 1 1 1 0… …1

00 0 1 1 1 0… …1

Find
0/1
Find
0/1

Find
1

start

0 → x , R

0× 0 1 1 1 0… …1

Find
0/1
Find
0/1

Find
1

start

0 → x , R

0× 0 1 1 1 0… …1

Find
0/1
Find
0/1

Find
1

start

Find
1

0 → x , R

0× 0 1 1 1 0… …1

Find
0/1
Find
0/1

Find
1

start

Find
1

0 → 0 , R

0 → x , R

0× 0 1 1 1 0… …1

Find
0/1
Find
0/1

Find
1

start

Find
1

0 → 0 , R

0 → x , R

0× 0 1 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Find
1

start

Find
1

1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Find
1

start

Find
1

1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R 0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R 0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R 0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

x → x , R

0× 0 × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × 1 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
1

start

Find
1

□ → □, R x → x , R
0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …1

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 0… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × 1 ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

0× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

Find
1

×× × × × × ×… …×

Find
1

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

x → x , R

0 → x , R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

Accept!

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

x → x , R

0 → x , R □ → □, R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

Accept!

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

x → x , R

0 → x , R □ → □, R

×× × × × × ×… …×

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

Accept!

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

x → x , R

0 → x , R □ → □, R

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

Accept!

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

x → x , R

0 → x , R □ → □, R

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

Accept!

Remember that all
missing transitions

implicitly reject.

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

x → x , R

0 → x , R □ → □, R

Find
0/1
Find
0/1

Go
home

Go
home

Find
0

Find
0

Find
1

start

Find
1

Accept!

□ → □, R x → x , R

1 → x , R

1 → 1 , R
x → x , R

0 → x , L

0 → 0 , L

1 → 1 , L

x → x , L 1 → x , L

0 → 0 , R

x → x , R

0 → x , R □ → □, R

Constant Storage

Sometimes, a TM needs to remember some
additional information that can't be put on
the tape.

In this case, you can use similar techniques
from DFAs and introduce extra states into
the TM's finite-state control.

The finite-state control can only remember
one of finitely many things, but that might
be all that you need!

A Different Idea

0 0 0 1 1 1 0… …1

A Different Strategy

0 0 0 1 1 1 0… …1

A Different Strategy

Could we sort the
characters of this string?

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

0 0 0 1 1 1 0… …1

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

…0 0 0 1 1 1… 01

A Different Strategy

Observation 1: A string of 0s and
1s is sorted if it matches the regex

0*1*.

…0 0 0 1 1 1… 01

A Different Strategy

Observation 2: A string of 0s and
1s is not sorted if it contains 10 as

a substring.

A Different Strategy

…0 0 0 1 1 1… 11

Observation 2: A string of 0s and
1s is not sorted if it contains 10 as

a substring.

A Different Strategy

…0 0 0 1 1 1… 10

Observation 2: A string of 0s and
1s is not sorted if it contains 10 as

a substring.

0 0 0 1 1 1 1… …0

A Different Strategy

Observation 2: A string of 0s and
1s is not sorted if it contains 10 as

a substring.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …0

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 1 1… …1

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 0 1… …1

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 0 1… …1

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

0 0 0 1 1 0 1… …1

A Different Strategy

Idea: Repeatedly find a copy of 10
and replace it with 01.

Let's Build It!

0 0 1 1 0 0… …

0 0 1 1 0 0… …

start

0*

0 0 1 1 0 0… …

start

0 0 1 1 0 0… …

0*

start

0*

0 0 1 1 0 0… …

start

0*

0 0 1 1 0 0… …

0*

start

0 → 0 , R

0 0 1 1 0 0… …

0*

start

0 → 0 , R

0 0 1 1 0 0… …

0*

start

1 → 1 , R

0 → 0 , R

0 0 1 1 0 0… …

0*

start

1 → 1 , R

0 → 0 , R

0 0 1 1 0 0… …

0* 0*1*

start

1 → 1 , R

0 → 0 , R

0 0 1 1 0 0… …

0* 0*1*

start

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0 0… …

0* 0*1*

start

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0 0… …

0* 0*1*

start

0 → ? , ?

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0 0… …

Based on what
we’re trying to do,
what should this
transition say?

0* 0*1*

start

0 → ? , ?

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0… …0

0* 0*1*

start

0 → ? , ?

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0… …0

0* 0*1*

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0… …1

0* 0*1*

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0… …1

0* 0*1*

Fix
01

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

0 → 0 , R

0 0 1 1 0… …1

0* 0*1*

Fix
01

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R
1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 1 0 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0… …11 0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0… …11 1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0… …10 1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 0… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …0

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 1 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

Our ultimate goal here was to sort everything so we could
hand it off to the machine to check for 0n1n. Let's rewind the

tape head back to the start.

0* 0*1*

Fix
01

Go
Home

start

0 → 1 , L

1 → 1 , R

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

start

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0 1… …1

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

This is just a placeholder. Imagine
snapping in the entire TM for 0n1n

into this diagram, putting the start
state in the dashed area.

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0 0 0 0… …

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

0* 0*1*

Fix
01

Go
Home

To
Start

Start
0n1n

start

This TM will sort any sequence of 0s and 1s, but it might take a
while.

Fun problem: design a TM that sorts a string of 0s and 1s, but
does so while taking way fewer steps than this machine.

□ → □, R

0 → 1 , L

1 → 1 , R

□ → □, L □ → □, L

□ → □, R

1 → 1 , R

1 → 0 , L
0 → 0 , L

1 → 1 , L

0 → 0 , R

0 → 0 , L

1 → 1 , L

TM Subroutines

A TM subroutine is a Turing machine
that, instead of accepting or rejecting an
input, does some sort of processing job.

TM subroutines let us compose larger TMs
out of smaller TMs, just as you'd write a
larger program using lots of smaller helper
functions.

Here, we saw a TM subroutine that sorts a
sequence of 0s and 1s into ascending order.

TM Subroutines

Typically, when a subroutine is done
running, you have it enter a state marked
“done” with a dashed line around it.

When we're composing multiple
subroutines together – which we'll do in a
bit – the idea is that we'll snap in some real
state for the “done” state.

Where We Stand

What have we seen TMs do so far?

• Operate on numbers.

• Sort sequences of values.

• Break tasks down into smaller pieces.

Here are a few other tasks TMs can do:

• Work with base-10 numbers.

• Increment and decrement numbers.

• Add numbers.

Aren’t these, you
know, the things
computers do?

If you’re curious to see how this is done, check the
appendix for this lecture. You aren’t required to do this,

though.

How to Turing machines compare with
standard, run-of-the-mill computers?

Real and “Ideal” Computers

A real computer has memory limitations: you
have a finite amount of RAM, a finite amount
of disk space, etc.

This makes them equivalent to finite
automata.

However, as computers get more and more
powerful, the amount of memory available
keeps increasing.

An idealized computer is like a regular
computer, but with unlimited RAM and disk
space. It functions just like a regular
computer, but never runs out of memory.

Claim 1: Idealized computers can simulate
Turing machines.

“Anything that can be done with a TM
can also be done with an unbounded-

memory computer.”

Clear a

1

Clear a

1

Go to

end
Check

for 0

Go to

end
Check

for 0

Go to

start

Go to

startstart

q
acc
q

a

q
acc
q

r

□ → □, R 0 → 0 , R

1 → 1 , L

0 → 0 , L

□ → □, R

□ → □, R

□ → □, L

□ → □, R

0 → □, R 1 → □, R

1 → 1 , R

0 → 0 , R

Clear a

1
q₂

Go to

end
Check

for 0
q₁q₀

Go to

start
q₃

start

q
acc
q

a

q
acc
q

r

□ → □, R 0 → 0 , R

1 → 1 , L

0 → 0 , L

□ → □, R

□ → □, R

□ → □, L

□ → □, R

0 → □, R 1 → □, R

1 → 1 , R

0 → 0 , R

Clear a

1
q₂

Go to

end
Check

for 0
q₁q₀

Go to

start
q₃

start

q
acc
q

a

q
acc
q

r

q₀

q₁

q₂

q₃

0

q₁ ◻ R

1

q
r
◻ R

◻

q
a
◻ R

q₁ 0 R q₁ 1 R q₂ ◻ L

q
r

0 R q₃ ◻ L q
r
◻ R

q₃ 0 L q₃ 1 L q₀ ◻ R

□ → □, R 0 → 0 , R

1 → 1 , L

0 → 0 , L

□ → □, R

□ → □, R

□ → □, L

□ → □, R

0 → □, R 1 → □, R

1 → 1 , R

0 → 0 , R

Clear a

1
q₂

Go to

end
Check

for 0
q₁q₀

Go to

start
q₃

start

q
acc
q

a

q
acc
q

r

q₀

q₁

q₂

q₃

0

q₁ ◻ R

1

q
r
◻ R

◻

q
a
◻ R

q₁ 0 R q₁ 1 R q₂ ◻ L

q
r

0 R q₃ ◻ L q
r
◻ R

q₃ 0 L q₃ 1 L q₀ ◻ R

The TM's finite-state control
can be encoded as a table,
just like we did for DFAs.

Simulating a TM

To simulate a TM, the computer would need to be able to keep
track of

• the finite-state control,

• the current state,

• the position of the tape head, and

• the tape contents.

The tape contents are infinite, but that's because there are
infinitely many blanks on both sides.

We only need to store the “interesting” part of the tape (the
parts that have been read from or written to so far.)

0 0 0 1 1 1 ……

Simulating a TM

To simulate a TM, the computer would need to be able to keep
track of

• the finite-state control,

• the current state,

• the position of the tape head, and

• the tape contents.

The tape contents are infinite, but that's because there are
infinitely many blanks on both sides.

We only need to store the “interesting” part of the tape (the
parts that have been read from or written to so far.)

…… 0 0 0 1 1 1

Simulating a TM

To simulate a TM, the computer would need to be able to keep
track of

• the finite-state control,

• the current state,

• the position of the tape head, and

• the tape contents.

The tape contents are infinite, but that's because there are
infinitely many blanks on both sides.

We only need to store the “interesting” part of the tape (the
parts that have been read from or written to so far.)

0 0 0 1 1 1

Claim 2: Turing machines can simulate
idealized computers.

“Anything that can be done with an
unbounded-memory computer can be done

with a TM.”

What We've Seen

TMs can

• implement loops (basically, every TM we've
seen).

• make function calls (subroutines).

• keep track of natural numbers (written in unary
or in decimal on the tape).

• perform elementary arithmetic (equality testing,
multiplication, addition, increment, decrement,
etc.).

• perform if/else tests (different transitions based
on different cases).

What Else Can TMs Do?

• Maintain variables.

• Have a dedicated part of the tape where the
variables are stored.

• We've seen this before: you can kinda sorta think
of our machine for { 0n1n | n ∈ ℕ } as checking if
two variables are equal.

• Maintain arrays and linked structures.

• Divide the tape into different regions
corresponding to memory locations.

• Represent arrays and linked structures by
keeping track of the ID of one of those regions.

A CS107 Perspective

Internally, computers execute by using basic
operations like

• simple arithmetic,

• memory reads and writes,

• branches and jumps,

• register operations,

• etc.

Each of these are simple enough that they
could be simulated by a Turing machine.

A Leap of Faith

• It may require a leap of faith, but anything
you can do with a computer (excluding
randomness and user input) can be
performed by a Turing machine.

• The resulting TM might be colossal, or
really slow, or both, but it would still
faithfully simulate the computer.

• We're going to take this as an article of faith
in CS103. If you’re curious for more details,
come talk to me after class.

Wait, You’re Saying a TM Can Do…

Sure! A picture is just a 2D
array of colors, and a color can
be represented as a series of

numbers.

“cat pictures?”

If you think about it, a video is just a series of pictures!

“cat videos?”

“cat pictures?”

Wait, You’re Saying a TM Can Do…

Yes! Write encodings of notes to play on the TM tape.
Hook up a speaker device that reads the tape and makes

sound.

“music?”

Yes! View all networked computers as
one gigantic machine.“chat messages over

the internet?”

Wait, You’re Saying a TM Can Do…

Just how powerful are Turing machines?

Effective Computation

An effective method of computation is a form of
computation with the following properties:

• The computation consists of a set of steps.

• There are fixed rules governing how one step
leads to the next.

• Any computation that yields an answer does so
in finitely many steps.

• Any computation that yields an answer always
yields the correct answer.

This is not a formal definition. Rather, it's a set of
properties we expect out of a computational
system.

The Church-Turing Thesis claims that

every effective method of computation is either
equivalent to or weaker than a Turing machine.

Regular
Languages

CFLs

All Languages

Problems
Solvable by

Any Feasible
Computing

Machine

Regular
Languages

CFLs

All Languages

Problems
solvable by

Turing
Machines

TMs ≈ Computers

• Because Turing machines have the same
computational powers as regular computers, we
can (essentially) reason about Turing machines
by reasoning about actual computer programs.

• Going forward, we're going to switch back and
forth between TMs and computer programs
based on whatever is most appropriate.

• In fact, our eventual proofs about the existence
of impossible problems will involve a good
amount of pseudocode. Stay tuned for details!

What problems can we solve with a computer?

What kind of computer?

What problems can we solve with a computer?

What does it mean to “solve” a problem?

The Hailstone Sequence

Consider the following procedure, starting
with some n ∈ ℕ, where n > 0:

• If n = 1, you are done.

• If n is even, set n = n / 2.

• Otherwise, set n = 3n + 1.

• Repeat.

Question: Given a number n, does this
process terminate?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

The Hailstone Sequence

Let Σ = {1} and consider the language

L = { 1n | n > 0 and the hailstone
sequence terminates for n }.

Could we build a TM for L?

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

Poof!

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

Poof!

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
of the string.

· If the input has odd length, triple the length of the
string and append a 1.

Accept.

Does this Turing machine accept all
nonempty strings?

The Collatz Conjecture

• It is unknown whether this process will
terminate for all natural numbers.

• In other words, no one knows whether
the TM described in the previous slides
will always stop running!

• The conjecture (unproven claim) that this
always terminates is called the Collatz
Conjecture.

The Collatz Conjecture

“Mathematics may not be ready
for such problems.” - Paul Erdős

The fact that the Collatz Conjecture is
unresolved is useful later on for building

intuitions. Keep this in mind!

An Important Observation

• Unlike finite automata, which automatically
halt after all the input is read, TMs keep
running until they explicitly enter an accept
or reject state.

• As a result, it’s possible for a TM to run
forever without accepting or rejecting.

• This leads to several important questions:

• How do we formally define what it means to
build a TM for a language?

• What implications does this have about
problem-solving?

Very Important Terminology

Let M be a Turing machine and let w be a string.

M accepts w if it enters an accept state when run on w.

M rejects w if it enters a reject state when run on w.

M loops infinitely on w (or just loops on w) if when run on w it
enters neither an accept nor a reject state.

M does not accept w if it either rejects w or loops infinitely on w.

M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

The Language of a TM

The language of a Turing machine M, denoted ℒ(M), is the set
of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

For any w ∈ ℒ(M), M accepts w.

For any w ∉ ℒ(M), M does not accept w.

M might reject w, or it might loop on w.

A language is called recognizable if it is the language of some
TM.

A TM M where ℒ(M) = L is called a recognizer for L.

Notation: the class RE is the set of all recognizable languages.

L ∈ RE ↔ L is recognizable

What do you think? Does that
correspond to what you think it

means to solve a problem?

